Chem 401 Practice for Final Exam

- 1. Which of the following statements regarding spontaneous changes is **false**?
 - a. Spontaneity is favored when heat is released.
 - b. Spontaneity is favored when the dispersal of matter is increased.
 - c. Spontaneous changes occur at a given state without any outside influence.
 - d. Ice melting at 25°C is spontaneous primarily due to the increase in molecular disorder (dispersal of matter).
 - e. All exothermic reactions are spontaneous.
- _____2. What is the entropy change of the reaction below at 298 K and 1 atm pressure?

	$N_2(g)$	+	$3H_2(g)$	\rightarrow	$2NH_3(g)$
$S^0(J/mol \bullet K)$	<i>S</i> 191.5		130.6		192.3

- a. -198.7 J/K
- b. 76.32 J/K
- c. -129.7 J/K
- d. 303.2 J/K
- e. 384.7 J/K
- 3. The heat of vaporization of methanol, CH_3OH , is 35.20 kJ/mol. Its boiling point is 64.6°C. What is the change in entropy for the vaporization of methanol?
 - a. -17.0 J/mol•K
 - b. 3.25 J/mol•K
 - c. 17.0 J/mol•K
 - d. 104 J/mol•K
 - e. 543 J/mol•K
- 4. Which one of the following reactions has a **positive** entropy change?
 - a. $H_2O(g) \rightarrow H_2O(\ell)$
 - b. $BF_3(g) + NH_3(g) \rightarrow F_3BNH_3(s)$
 - c. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
 - d. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - e. $2NH_4 NO_3(s) \rightarrow 2N_2(g) + 4H_2O(g) + O_2(g)$
 - 5. Which of the following statements about free energy is false?
 - a. If ΔS is negative then ΔH must be negative for a spontaneous process.
 - b. ΔS is positive for many spontaneous processes.
 - c. ΔG is always negative for spontaneous processes.
 - d. ΔG is always positive for nonspontaneous processes.
 - e. ΔS must be positive for a process to be spontaneous.
 - 6. Calculate ΔG^0 for the reaction below. The standard molar *entropy* change for the reaction at 298 K is -287.5 J/mol•K.

$$3NO_2(g) + H_2O(\ell) \rightarrow 2HNO_3(aq) + NO(g) + 136.8 \text{ kJ}$$

- a. 51.2 kJ/mol
- b. 85,500 kJ/mol
- c. 68.4 kJ/mol
- d. 236 kJ/mol
- e. 222 kJ/mol

7. Evaluate ΔG_{298}^{0} for the following reaction at 25°C.

	2ZnS(s)	+	3O ₂ (g)	\rightarrow	2ZnO(s)	+	$2SO_2(g)$
ΔH (kJ/mol)	-205.6		0		-348.3		-296.8
$S^0(J/mol \bullet K)$	57.7		205.0		43.64		248.1
 a951.1 kJ b922.6 kJ c704.2 kJ d835.2 kJ e1902 kJ 							

8. A process **cannot** be spontaneous (product-favored) if _____.

- a. it is exothermic, and there is an increase in disorder
- b. it is endothermic, and there is an increase in disorder
- c. it is exothermic, and there is a decrease in disorder
- d. it is endothermic, and there is a decrease in disorder
- e. the entropy of the universe increases
- 9. For which set of values of ΔH and ΔS will a reaction be spontaneous (product-favored) at all temperatures?
 - a. $\Delta H = +10 \text{ kJ}, \Delta S = -5 \text{ J/K}$
 - b. $\Delta H = -10 \text{ kJ}, \Delta S = -5 \text{ J/K}$
 - c. $\Delta H = -10 \text{ kJ}, \Delta S = +5 \text{ J/K}$
 - d. $\Delta H = +10 \text{ kJ}, \Delta S = +5 \text{ J/K}$
 - e. no such values exist
- _ 10. Which of the following expressions does <u>not</u> represent a proper expression for the rate of this reaction?

$$2A + 3B \rightarrow F + 2G$$
a.
$$\frac{-\Delta[A]}{\Delta t}$$
b.
$$\frac{-\Delta[B]}{3\Delta t}$$
c.
$$\frac{\Delta[F]}{\Delta t}$$
d.
$$\frac{\Delta[G]}{2\Delta t}$$

11. In the following reaction, the rate of formation of NH_3 is 0.15 mol/L•min. What is the rate of reaction?

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

- a. 0.15 mol/L•min
- b. 0.075 mol/L•min
- c. -0.075 mol/L•min
- d. 0.20 mol/L•min
- e. 0.30 mol/L•min
- 12. Suppose a reaction $A + B \rightarrow C$ occurs at some initial rate at 25°C. Which response includes all of the changes below that **could** increase the rate of this reaction?
 - I. lowering the temperature
 - II. adding a catalyst
 - III. increasing the initial concentration of B
 - a. I c. III e. II and III
 - b. II d. I and II

- 13. The gas phase reaction $A + B + C \rightarrow D$ has a reaction rate which is experimentally observed to follow the relationship rate = $k[A]^2[C]$. The reaction is _____ order in A, _____ order in B, and _____ order in C.
 - a. first, second, third
 - b. first, second, zero
 - c. second, zero, first
 - d. second, first, zero
 - e. second, zero, zero
- 14. Which of the following statements regarding the rate constant in the rate law expression is incorrect?
 - a. Its value increases with temperature.
 - b. Its value is independent of initial concentration at a given temperature.
 - c. Its units depend on the overall order of reaction.
 - d. Its value is experimentally determined.
 - e. The larger its value, the slower the reaction rate.
- 15. Given the following data for the $NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$ reaction

Trial	$[\mathrm{NH_4}^+]$	$[NO_2]$	Rate <i>M</i> /s
1	0.010 M	0.020 M	0.020
2	0.015	0.020	0.030
3	0.010	0.010	0.005

The rate law for the reaction is

- a. rate = $k[NH_4^+][NO_2^-]$
- b. rate = $k[NH_4^+]^2[NO_2^-]$
- c. rate = $k[NH_4^+][NO_2^-]^2$
- d. rate = $k[NH_4^+]^2[NO_2^-]^2$
- e. None of the above
- 16. Evaluate the specific rate constant for this reaction at 800°C. The rate-law expression is rate = $k[NO]^2[H_2]$. (Choose the closest answer.)

 $2NO(g) + 2H_2(g) \rightarrow (g) + 2H_2O(g)$

Experiment	Initial [NO]	Initial [H ₂]	Initial Rate of Reaction $(M \bullet s^{-1})$
1	0.0010 M	0.0060 M	7.9×10^{-7}
2	0.0040 M	0.0060 M	1.3×10^{-5}
3	0.0040 M	0.0030 M	6.4×10^{-6}

- a. $22 M^{-2} \cdot s^{-1}$
- b. $4.6 M^{-2} \cdot s^{-1}$
- c. $1.3 \times 10^2 M^{-2} \cdot \text{s}^{-1}$
- d. $0.82 M^{-2} \cdot s^{-1}$
- e. $0.024 M^{-2} \cdot s^{-1}$
- 17. The gas phase reaction below obeys the rate-law expression rate = k[PCl₅]. At 400 K the specific rate constant is 0.0371 min⁻¹. How many <u>hours</u> are required to reduce a sample of PCl₅ to **10%** of its original amount?

 $PCl_5 \rightarrow PCl_3 + Cl_2$

- a. 3.10 hrs
- b. 1.03 hrs
- c. 186 hrs
- d. 3.71 hrs
- e. 62 hrs

18. A plot of $\frac{1}{[D]}$ versus time is linear for the reaction D \rightarrow E. What is the kinetic order of the reaction?

- a. second
- b. first
- c. zero
- d. one-half
- e. negative one

_ 19. Which idea listed below is not a part of the collision theory of reaction rates?

- a. Molecules must be properly oriented when they collide to react.
- b. Molecules must collide to react.
- c. Molecules must collide with enough kinetic energy to overcome the potential energy stabilization of the bonds.
- d. Effective collisions result in a chemical reaction.
- e. All molecular collisions result in a reaction.
- _ 20. Given the following potential energy diagram for the one-step reaction

 $X + Y \rightarrow Z + R$

The activation energy of the *reverse* reaction is equal to _____.

- a. d
- b. c plus d
- c. c
- d. a plus c
- e. d minus a

_____ 21. Consider the hypothetical reaction shown below.

 $2A + C_2 \rightarrow A_2C + C$

Assume that the following proposed mechanism is consistent with the rate data.

А	+	$C_2 \rightarrow AC + C$	slow
AC	+	$A \rightarrow A_2C$	fast
2A	+	$C_2 \rightarrow A_2C + C$	overall

Which one of the following statements must be true? The reaction is _____.

- a. first order in A, first order in B, and third order overall
- b. second order in C_2 and second order overall
- c. first order in A and first order in C_2
- d. second order in C₂, zero order in A, and third order overall
- e. second order in A and second order overall

- 22. The specific rate constant, *k*, for a reaction is 0.44 s^{-1} at 298 K, and the activation energy is 245.kJ/mol. Calculate *k* at 398 K. (The universal gas constant = $8.314 \text{ J/mol} \cdot \text{K.}$)
 - $\ln\left(\frac{k_2}{k_1}\right) = \frac{\mathbf{E}_a}{R} \left(\frac{1}{T_1} \frac{1}{T_2}\right)$ a. $2.71 \times 10^{10} \,\mathrm{s}^{-1}$
 - b. $6.17 \times 10^{10} \text{ s}^{-1}$
 - c. $1.03 \times 10^{10} \text{ s}^{-1}$
 - d. $8.32 \times 10^8 \text{ s}^{-1}$ e. $4.51 \times 10^9 \text{ s}^{-1}$
- 23. What is the value of K_c for the reaction $CH_4(g) + H_2O(g) \leftrightarrow CO(g) + 3H_2(g)$ if at equilibrium $[CH_4] = 0.20 M$, $[H_2O] = 0.20 M$, [CO] = 0.50 M and $[H_2] = 1.50 M$?
 - a. 19
 - b. 0.24
 - c. 0.053
 - d. 42
 - e. 16
- $\underline{\qquad} 24. \quad \text{Given: } A(g) + 3B(g) \leftrightarrow C(g) + 2D(g)$

One (1.0) mole of A and 1.0 mole of B are placed in a 5.0-liter container. After equilibrium has been established, 0.50 mole of D is present in the container. Calculate the equilibrium constant, K_c , for the reaction.

- a. 1.2
- b. 0.68
- c. 12
- d. 27
- e. 1.4×10^2
- 25. The following reaction is initiated and the concentrations are measured after ten minutes: $A(g) + 3 B(g) \leftrightarrow AB_3(g); K_c = 1.33 \times 10^{-2}$

[A] = 1.78 M [B] = 2.21 M $[AB_3] = 1.19 M$

Is the reaction in equilibrium?

- a. Yes.
- b. No, because Q < K.
- c. No, and the [AB₃] must increase to establish equilibrium.
- d. No, because $\hat{Q} > K$.
- e. There is no way to tell.
- 26. The numerical value of the equilibrium constant, K_c , for the following gas phase reaction is 0.50 at a certain temperature. When a certain reaction mixture reaches equilibrium, the concentration of O₂ is found to be 2.0 *M*, while the concentration of SO₃ is found to be 10 *M*. What is the equilibrium concentration of SO₂ in this mixture?

$$2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g)$$

- a. 0.50 *M*
- b. 10 *M*
- c. 0.10 M
- d. 5.0 M
- e. 1.0 M

Name_

27. For the following reaction, K_c is 144 at 200°C. If 0.400 mol of both A and B are placed in a 2.00-liter container at that temperature, what will be the concentration of B at equilibrium?

$$A(g) + B(g) \leftrightarrow C(g) + D(g)$$

- a. 0.015 *M*
- b. 1.64 *M*
- c. 0.200 *M*
- d. 0.185 M
- e. 1.13 *M*
- 28. For the following reaction, which of the changes listed below would cause <u>more reactants</u> to form when equilibrium is re-established?

$$2NOCl(g) + 75 \text{ kJ} \leftrightarrow 2NO(g) + Cl_2(g)$$

- a. Add a catalyst.
- b. Increase the temperature.
- c. Decrease the [NO]
- d. Increase the volume.
- e. Increase the pressure.
- 29. For the following reaction at equilibrium at 445°C the partial pressures were found to be $[H_2] = 0.45$ atm, $[I_2] = 0.10$ atm and [HI] = 1.53 atm. Calculate K_p for this reaction.

$$H_2(g) + I_2(g) \leftrightarrow 2HI(g)$$

- a. 150
- b. 34
- c. 52
- d. 76
- e. 4.4

30. A sample of only solid ammonium chloride was heated in a 1.00-L container at 500.°C $NH_4Cl(s) \leftrightarrow NH_3(g) + HCl(g)$. At equilibrium, the pressure of $NH_3(g)$ was found to be 1.75 atm. What is the equilibrium constant, K_c , for the decomposition at this temperature?

- a. 7.6×10^{-4}
- b. 1.2×10^4
- c. 4.8×10^{-2}
- d. 1.9×10^2
- e. 1.8×10^{-3}
- _____ 31. Which one of the following pairs of acids and conjugate bases is incorrectly labeled or incorrectly matched?

	Acid	Conjugate Base
a.	water	hydroxide
b.	sulfuric acid	sulfate
c.	perchloric acid	perchlorate
d.	nitric acid	nitrate
e.	hydrobromic acid	bromide

_____ 32. If a compound is able to react as either an acid or a base, it is said to be which of these?

- a. autoionized
- b. amphoteric
- c. hydrated
- d. balanced
- e. neutralized

- 33. Which one of the following is **not** a strong acid?
 - a. HI
 - b. HF
 - c. HNO₃
 - d. H_2SO_4
 - e. $HClO_3$

_____ 34. Which one of the following is a soluble, strong base?

- a. CsOH
- b. Cu(OH)₂
- c. Fe(OH)₃
- d. Mn(OH)₂
- e. Al(OH)₃
- _____ 35. Write the balanced **formula unit** equation for the reaction of hydrobromic acid with calcium hydroxide. What is the sum of the coefficients? (Do not forget coefficients of one.)
 - a. 6
 - b. 7
 - c. 3
 - d. 4
 - e. 5
 - 36. Neutralization, according to the Lewis theory, involves _____.
 - a. proton transfer
 - b. the formation of a gas
 - c. the formation of an ionic solid
 - d. the formation of a coordinate covalent bond
 - e. the combination of a hydrogen ion with a hydroxide ion to form water
- _____ 37. In the reaction $\text{SnCl}_4 + 2\text{Cl}^- \rightarrow \text{SnCl}_6^{2-}$, the SnCl_4 functions as a(an) _____.
 - a. Brønsted-Lowry acid
 - b. Brønsted-Lowry base
 - c. Arrhenius base
 - d. Lewis acid
 - e. Lewis base

Chapter 18 Values

The following values will be useful for problems in this chapter.

Acid	Κ	Substance or Species	K
HF	$K_{\rm a} = 7.2 \times 10^{-4}$	NH ₃	$K_{\rm b} = 1.8 \times 10^{-5}$
HNO ₂	$K_{\rm a} = 4.5 \times 10^{-4}$	$(CH_3)_3N$	$K_{\rm b} = 7.4 \times 10^{-5}$
CH ₃ COOH	$K_{\rm a} = 1.8 \times 10^{-5}$	$[Co(OH_2)_6]^{2+}$	$K_{\rm a} = 5.0 \times 10^{-10}$
HOCI	$K_{\rm a} = 3.5 \times 10^{-8}$	$[Fe(OH_2)_6]^{2+}$	$K_{\rm a} = 3.0 \times 10^{-10}$
HOBr	$K_{\rm a} = 2.5 \times 10^{-9}$	$[Fe(OH_2)_6]^{3+}$	$K_{\rm a} = 4.0 \times 10^{-3}$
HOCN	$K_{\rm a} = 3.5 \times 10^{-4}$	$[Be(OH_2)_4]^{2+}$	$K_{\rm a} = 1.0 \times 10^{-5}$
HCN	$K_{\rm a} = 4.0 \times 10^{-10}$	$\left[\operatorname{Cu}(\operatorname{OH}_2)_4\right]^{2+}$	$K_{\rm a} = 1.0 imes 10^{-8}$
H_2SO_4	$K_{a1} =$ very large	HBO_2	$K_{\rm a} = 6.0 \times 10^{-10}$
	$K_{\rm a2} = 1.2 \times 10^{-2}$	$(COOH)_2$	$K_{\rm a1} = 5.9 \times 10^{-2}$
H_2CO_3	$K_{\rm a1} = 4.2 \times 10^{-7}$		$K_{\rm a2} = 6.4 \times 10^{-5}$
	$K_{\rm a2} = 4.8 \times 10^{-11}$	CH ₃ NH ₂	$K_{b} = 5.0 \times 10^{-4}$
***********	******	*****	*****

- 38. Which one of the following substances is **not** a strong electrolyte?
 - a. NH_4Cl d. NH_3
 - b. $HClO_4$ e. $Mg(NO_3)_2$
 - c. HNO_3
- $_$ 39. The molar concentration of the Ca²⁺ ion is $_$ and the molar concentration of OH⁻ ion is $_$ in 0.015 *M* calcium hydroxide.
 - a. 0.015 *M*; 0.015 *M*
 - b. 0.015 *M*; 0.030 *M*
 - c. 0.030 M; 0.015 M
 - d. 0.030 *M*; 0.030 *M*
 - e. not enough information to calculate
- 40. Calculate the concentrations of H_3O^+ and OH^- ions in a 0.25 *M* HClO₄ solution.
 - a. $[H_3O^+] = 0.25 M$, $[OH^-] = 0.25 M$
 - b. $[H_3O^+] = 0.25 M, [OH^-] = 4.0 M$
 - c. $[H_3O^+] = 0.25 M$, $[OH^-] = 4.0 \times 10^{-14} M$
 - d. $[H_3O^+] = 0.50 M, [OH^-] = 2.0 \times 10^{-14} M$
 - e. $[H_3O^+] = 1.0 \times 10^{-7} M$, $[OH^-] = 1.0 \times 10^{-7} M$
- _____ 41. A solution having a pH of 1.4 would be described as _____.
 - a. distinctly basic
 - b. slightly basic
 - c. neutral
 - d. slightly acidic
 - e. distinctly acidic
- 42. Calculate the pOH of a solution that has the OH⁻ concentration of 0.50 *M*.
 - a. 0.50
 - b. 14.30
 - c. 6.70
 - d. 13.70e. 0.30
 - 43. What is the concentration of H_3O^+ ions in a solution in which pH = 4.32?
 - a. $4.8 \times 10^{-5} M$
 - b. $6.2 \times 10^{-4} M$
 - c. $5.1 \times 10^{-4} M$
 - d. $8.6 \times 10^{-5} M$
 - e. $3.5 \times 10^{-4} M$
- 44. The pH of a 0.10 *M* solution of a monoprotic acid is 2.85. What is the value of the ionization constant of the acid?
 - a. 6.3×10^{-5}
 - b. 3.8×10^{-6}
 - c. 2.0×10^{-5}
 - d. 4.0×10^{-8}
 - e. 7.2×10^{-6}
- 45. What is the [OCl⁻] in 0.10 *M* hypochlorous acid, HOCl? $K_a = 3.5 \times 10^{-8}$
 - a. $5.9 \times 10^{-5} M$
 - b. $8.4 \times 10^{-4} M$
 - c. $6.1 \times 10^{-4} M$
 - d. $4.2 \times 10^{-6} M$
 - e. $3.6 \times 10^{-7} M$

- 46. Calculate the value of $[H_3O^+]$ in a 0.25 *M* solution of aqueous ammonia. $K_b = 1.8 \times 10^{-5}$
 - a. $2.1 \times 10^{-3} M$
 - b. $4.7 \times 10^{-12} M$
 - c. $2.3 \times 10^{-9} M$
 - d. $4.3 \times 10^{-10} M$
 - e. $2.4 \times 10^{-11} M$
- 47. Which of the following anions is the strongest base?
 - a. ClO⁻ d. Cl⁻
 - b. ClO_3^- e. I
 - c. ClO₄
- 48. When solid NaCN is added to water, the pH _____.
 - a. remains at 7
 - b. becomes greater than 7 because of hydrolysis of Na⁺
 - c. becomes less than 7 because of hydrolysis of Na⁺
 - d. becomes greater than 7 because of hydrolysis of CN⁻
 - e. becomes less than 7 because of hydrolysis of CN
 - 49. Calculate the pH of 0.14 *M* NaF solution.
 - a. 8.09
 - b. 8.12
 - c. 8.14
 - d. 8.18
 - e. 8.21

Chapter 19 Values

The following equilibrium constants will be useful for some of the problems.

Substance	Constant	Substance	Constant
HCO ₂ H	$K_{\rm a} = 1.8 \times 10^{-4}$	H_2CO_3	$K_1 = 4.2 \times 10^{-7}$
HNO_2	$K_{\rm a} = 4.5 \times 10^{-4}$		$K_2 = 4.8 \times 10^{-11}$
HOC1	$K_{\rm a} = 3.5 \times 10^{-8}$	(COOH) ₂	$K_1 = 5.9 \times 10^{-2}$
HF	$K_{\rm a} = 7.2 \times 10^{-4}$		$K_2 = 6.4 \times 10^{-5}$
HCN	$K_{\rm a} = 4.0 \times 10^{-10}$	CH ₃ COOH	$K_{\rm a} = 1.8 \times 10^{-5}$
H_2SO_4	$K_1 =$ very large	HOCN	$K_{\rm a} = 3.5 \times 10^{-4}$
	$K_2 = 1.2 \times 10^{-2}$	$C_6H_5NH_2$	$K_{ m b} = 4.2 imes 10^{-10}$
HOBr	$K_a = 2.5 \times 10^{-9}$	NH ₃	$K_{ m b}=1.8 imes10^{-5}$
*****	*****	*******	******

____ 50. What is the $[H_3O^+]$ of a solution that is 0.0100 *M* in HOCl and 0.0300 *M* in NaOCl?

- a. $2.14 \times 10^{-7} M$
- b. $1.45 \times 10^{-7} M$
- c. $7.41 \times 10^{-8} M$
- d. $2.29 \times 10^{-8} M$
- e. $1.17 \times 10^{-8} M$
- _____ 51. Which one of the following combinations is **not** a buffer solution?
 - a. $NH_3 (NH_4)_2SO_4$
 - b. HBr KBr
 - c. HCN NaCN
 - d. $NH_3 NH_4Br$
 - e. CH₃COOH NaCH₃COO

Name____

- 52. It is desired to buffer a solution at pH = 4.30. What molar ratio of CH_3COOH to NaCH₃COO should be used?
 - a. 1.2/1
 - b. 0.8/1c. 0.12/1
 - c. 0.12/1d. 2.8/1
 - u. 2.8/1 e. 6.2/1
- 53. What is the pH at the point in a titration at which 20.00 mL of 1.000 *M* KOH has been added to 25.00 mL of 1.000 *M* HBr?
 - a. 1.67
 - b. 0.95
 - c. 3.84
 - d. 2.71
 - e. 1.22
- 54. What is the pH of the solution resulting from the addition of 25.0 mL of 0.0100 M NaOH solution to 40.0 mL of 0.0100 M acetic acid, CH₃COOH?
 - a. 4.54
 - b. 4.52
 - c. 4.94
 - d. 4.96
 - e. 5.17
 - ____ 55. How many grams of potassium formate, **KHCOO**, must be added to **500. mL** of a **0.0700** *M* solution of formic acid, **HCOOH**, to produce a buffer solution with a pH of **3.50**? (Any change in the volume of the solution due to the addition of solid potassium formate is insignificant.)
 - $K_{\rm a} = 1.8 \times 10^{-4}$ for HCOOH.
 - a. 1.0 g
 - b. 5.2 g
 - c. 6.7 g
 - d. 1.7 g
- 56. Calculate the solubility product constant for aluminum hydroxide. Its molar solubility is 2.9×10^{-9} mole per liter at 25°C.
 - a. 9.8×10^{-26}
 - b. 4.9×10^{-26}
 - c. 7.1×10^{-35}
 - d. 2.1×10^{-34}
 - e. 1.9×10^{-33}
- 57. Magnesium hydroxide is a slightly soluble substance. If the pH of a saturated solution of Mg(OH)₂ is 10.49 at 25° C, calculate K_{sp} for Mg(OH)₂.
 - a. 8.8×10^{-16}
 - b. 4.2×10^{-15}
 - c. 6.0×10^{-10}
 - d. 4.4×10^{-14}
 - e. 1.5×10^{-11}

58. How many grams of Mn(OH)₃ will dissolve in 1350 mL of water at 25°C? $K_{sp} = 1.0 \times 10^{-36}$

- a. 4.6×10^{-8} g
- b. 6.3×10^{-8} g
- c. 5.9×10^{-10} g
- d. 1.4×10^{-7} g
- e. 9.3×10^{-7} g

- 59. The K_{sp} for Fe(IO₃)₃ is 10⁻¹⁴. We mix two solutions, one containing Fe³⁺ and one containing IO₃⁻ ions at 25°C. At the instant of mixing, [Fe³⁺] = 10⁻⁴ M and [IO₃⁻] = 10⁻⁵ M. Which one of the following statements is true?
 - a. A precipitate forms, because $Q_{sp} > K_{sp}$.
 - b. A precipitate forms, because $Q_{sp} < K_{sp}$.
 - c. No precipitate forms, because $Q_{sp} > K_{sp}$.
 - d. No precipitate forms, because $Q_{sp} < K_{sp}$.
 - e. None of the preceding statements is true.

60. A solution contains 0.05 M Au⁺, 0.05 M Cu⁺, and 0.05 M Ag⁺ ions. When solid NaCl is added to the solution, what is the **order** in which the chloride salts will begin to precipitate? $K_{sp(AgCl)} = 1.8 \times 10^{-10}$, $K_{sp(AuCl)} = 2.0 \times 10^{-10}$ $10^{-13}, K_{\rm sp(CuCl)} = 1.9 \times 10^{-7}$

- a. AuCl > AgCl > CuCl
- b. AuCl > AgCl > NaCl
- c. AgCl > CuCl > AuCl
- d. CuCl > AgCl > AuCl
- e. NaCl > CuCl > AgCl

61. Calculate the concentration of Cu^{2+} ions in a 0.010 *M* [Cu(NH₃)₄]²⁺ solution at 25°C.

- $K_{\rm d}$ for $[{\rm Cu}({\rm NH}_3)_4]^{2+} = 8.5 \times 10^{-13}$
- a. $1.3 \times 10^{-3} M$
- b. $5.1 \times 10^{-4} M$
- c. $6.3 \times 10^{-5} M$
- d. $8.7 \times 10^5 M$
- e. $1.3 \times 10^{-6} M$
- What is the oxidation number of arsenic in K₃AsO₄? 62.
 - a. +1 +4d. +5
 - b. +2 e.
 - c. +3
- 63. Balance the following equation. How many HCl are there on the left side of the balanced equation? $K_2Cr_2O_7 + Na_2SO_3 + HCl \rightarrow KCl + Na_2SO_4 + CrCl_3 + H_2O$
 - 1 a.
 - b. 2
 - 3 c.
 - d. 4
 - e. 8
- 64. Consider the following net ionic equation. Which species is oxidized?
 - $MnO_4^- + SO_3^{2-} \rightarrow Mn^{2+} + SO_4^{2-}$ (acidic solution)
 - MnO₄ a.
 - b. Mn^{2+}
 - c. SO_3^{2-}
 - d. SO_4^2
 - e. no species is oxidized
 - 65. In **any** electrochemical cell, the anode is **always**
 - a. the positive electrode.
 - b. the negative electrode.
 - c. the electrode at which some species gains electrons.
 - d. the electrode at which some species loses electrons.
 - e. the electrode at which reduction occurs.

Name_

- 66. Which choice includes all of the following that are oxidation-reduction reactions and no others?
 - I. $BaSO_3(s) \rightarrow BaO(s) + SO_2(g)$
 - II. $2K(s) + Br_2(\ell) \rightarrow 2KBr(s)$
 - III. $H_2CO_3(aq) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + 2H_2O(\ell)$
 - IV. $SnS_2(s) + HCl(aq) \rightarrow H_2SnCl_6(s) + 2H_2S(aq)$
 - V. $3Cl_2(g) + 6KOH(aq) \rightarrow 5KCl(aq) + KClO_3(aq) + 3H_2O(\ell)$
 - a. II, III, and IV
 - b. I and III
 - c. II and V
 - d. I and IV
- 67. How many coulombs of charge pass through a cell if 2.40 amperes of current are passed through the cell for 85.0 minutes?
 - a. $2.04 \times 10^2 \text{ C}$
 - b. 1.33×10^{-1} C
 - c. $1.22 \times 10^4 \text{ C}$
 - d. 2.12×10^3 C
 - e. 3.40 C
- _ 68. Which of the following statements about voltaic cells is **false**?
 - a. Voltaic cells are spontaneous reactions.
 - b. The cathode is positive.
 - c. Electrons flow from the cathode to the anode.
 - d. A salt bridge maintains electrical contact and charge neutrality in the half-cells.
 - e. The half-reactions take place in separate cells.
- 69. A voltaic cell is constructed with one cell consisting of an Al electrode in $1.0 M \text{ Al}^{3+}$ and another cell with an Fe electrode in $1.0 M \text{ Fe}^{2+}$. When this cell operates, the Al electrode loses mass and the Fe electrode gains mass. Which of the following represents the reaction that occurs at the <u>positive electrode</u> of this cell?
 - a. $Al^{3+} + 3e^{-} \rightarrow Al$
 - b. Fe \rightarrow Fe²⁺ + 2e⁻
 - c. $Al \rightarrow Al^{3+} + 3e^{-1}$
 - d. $Fe^{2+} + 2e^{-} \rightarrow Fe$
 - e. $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$
- _ 70. Which of the following statements about the operation of a standard galvanic cell made of a Cu/ Cu²⁺ half-cell and a Zn/ Zn²⁺ half-cell is **false**?
 - a. The mass of the copper electrode decreases.
 - b. The $[Zn^{2+}]$ increases.
 - c. The $[Cu^{2+}]$ decreases.
 - d. The salt bridge maintains charge neutrality.
 - e. The zinc electrode is oxidized.
- _ 71. Which of the following describes the net reaction that occurs in the cell,
 - $Cd|Cd^{2+}(1 M)||Cu^{2+}(1 M)|Cu?$
 - a. $Cu + Cd^{2+} \rightarrow Cu^{2+} + Cd$
 - b. $Cu + Cd \rightarrow Cu^{2+} + Cd^{2+}$
 - c. $Cu^{2+} + Cd^{2+} \rightarrow Cu + Cd$
 - d. $Cu^{2+} + Cd \rightarrow Cu + Cd^{2+}$
 - e. $2Cu + Cd^{2+} \rightarrow 2Cu^{+} + Cd$

72. What is the cell potential for a cell constructed by immersing a strip of manganese in a $1.0 M MnSO_4$ solution and a strip of iron in a 1.0 M FeSO₄ solution and completing the circuit by a wire and a salt bridge? a. -1.62 V

- b. +1.62 V
- c. -0.74 V
- d. +0.74 V
- e. +1.21 V

73. What is the cell potential for the following reaction if the $[Au^+] = 0.0015 M$ and the $[Fe^{3+}] = 0.033 M$? Relevant half-reactions are $\text{Fe}^{3+}(\text{aq}) + 3 \text{ e}^- \rightarrow \text{Fe}(s)$, $\text{E}^{\circ}_{\text{red}} = -0.04 \text{ V}$ and $\text{Au}^+(\text{aq}) + \text{e}^- \rightarrow \text{Au}(s)$, $\text{E}^{\circ}_{\text{red}} = 1.69 \text{ V}$ Fe (s) + 3 Au⁺ (aq) \rightarrow Fe³⁺ (aq) + 3 Au (s)

- a. 1.87 V
- b. 1.73 V
- c. 1.65 V
- d. 1.70 V e. 1.59 V
- 74.

	Standard Reduction
Reduction Half-Reaction	Potential E ⁰ (volts)
$Mg^{2+} + 2 e^{-} \rightarrow Mg(s)$	-2.37
$Ni^{2+} + 2 e^{-} \rightarrow Ni(s)$	-0.25

Which of the following reactions will take place **spontaneously**:

- a. $Ni^{2+} + Mg^{2+} \rightarrow Ni(s) + Mg(s)$
- b. $Ni^{2+} + Mg(s) \rightarrow Ni(s) + Mg^{2+}$
- c. $Ni(s) + Mg(s) \rightarrow Ni^{2+} + Mg^{2+}$
- d. $Ni(s) + Mg^{2+} \rightarrow Ni^{2+} + Mg(s)$

75. In which one of the following does the **transition metal** have a 3d8 electronic configuration?

- a. $[Fe(NCS)(OH_2)_5]^{2+}$
- b. $[FeF_6]^{4-}$
- c. $[CuCl_4]^{2-}$
- d. $[Co(NH_3)_6]^{3+}$
- e. $[Ni(NH_3)_6]^{2+}$

76. Which one of the following octahedral configurations has **no** low spin configuration?

- a. d^4
- b. d^7
- c. d^8
- d. d^6
- e. d^5
- 77. Consider the complex ion $[FeF_6]^{3}$. Which response includes all of the following statements that are true, and no false statements?
 - I. It is paramagnetic.
 - It is a low spin complex. II.
 - It is a high spin complex. III.
 - IV. The oxidation number of iron is +3.
 - a. I, III, and IV d. I and II
 - b. II and III e. II and IV
 - c. IV

Name

- 78. Consider the complex ion $[Fe(CN)_6]^4$. Which of the following responses includes **all** of the **true** statements with respect to this complex ion and the ions from which it was formed, and no false statements?
 - I. The complex ion is octahedral.
 - II. Fe^{2+} is a d^5 ion.
 - III. CN- is a strong field ligand.
 - IV. CN- is a weak field ligand.
 - V. The complex ion is a low spin complex.
 - VI. The complex ion is a high spin complex.
 - VII. The complex ion contains no unpaired electrons.
 - VIII. The complex ion contains four unpaired electrons.
 - a. I, II, III, V, and VII
 - b. II, III, V, and VII
 - c. II, IV, VI, and VIII
 - d. I, II, IV, VI, and VIII
 - e. I, III, V, and VII

_____79. Which of the following statements concerning octahedral complexes is incorrect?

- a. Strong field ligands produce large crystal field splittings.
- b. Weak field ligands produce high spin complexes.
- c. Halide ions are strong field ligands.
- d. Weak field ligands result in relatively small values for Δ° .
- e. A relatively large value for Δ° causes a complex ion to absorb relatively high energy (shorter wavelength) light.
- _ 80. Complete and balance the following equation. The missing term is _____.

- $\frac{106}{47}$ Ag decays by an electron capture, the resulting isotope would be _____.
 - a. 107 $_{47}^{0}$ Ag b. 106 $_{48}^{0}$ Cd c. 110 $_{49}^{0}$ In d. 105 d. 105 e. 106 d. 105 e. 106 d. 46 Pd e. 106 d. 46 Pd
- ____ 82. The half-life of Tc-99 is 2.13×10^5 years. What is the value of the specific rate constant, k?
 - a. $3.25 \times 10^{-6} \text{ y}^{-1}$
 - b. $1.41 \times 10^{-6} \text{ y}^{-1}$
 - c. $4.69 \times 10^{-6} \text{ y}^{-1}$
 - d. 0.693 y^{-1}
 - e. $1.48 \times 10^5 \text{ y}^{-1}$

- 83. Nitrogen-13 has a half-life of 9.97 minutes. How much of a 10.0-g sample remains after 60.0 minutes?
 a. 9.2 g
 - b. 0.15 g
 - c. 0.35 g
 - d. 1.2 g
 - e. 2.5 g

_____ 84. The half-life of 33 P is 25.3 days. How long will it take for 64.0 g to decay to 1.0 g?

- a. 150 d
- b. 350 d
- c. 210 d
- d. 120 d
- e. 100 d
- 85. What is the molecular formula for heptane?
 - a. C₇H₁₄
 - b. $C_7 H_{12}$
 - c. C₉H₁₈
 - d. C₇H₁₆
 - e. C₉H₂₀
- _____ 86. The correct IUPAC name for the compound shown below is _____.

- a. 3,5,6-trimethyl-6-propyloctane
- b. 6-ethyl-3,5,6-trimethylnonane
- c. 2-ethyl-4,5-dimethyl-5-propylheptane
- d. 2,5-diethyl-4,5-dimethyloctane
- e. 3,4,6-trimethyl-3-propyloctane
- ____ 87. Benzene does **not** have _____.
 - a. sp^2 hybridized carbons
 - b. π bonds
 - c. resonance
 - d. delocalized electrons
 - e. tetrahedral carbons
- 88. Which one of the following is a **tertiary** alcohol?
 - a. CH₃CH₂OH
 - b. CH₃OH
 - c. CH₃CH(OH)CH₃
 - d. (CH₃)₃COH
 - e. None of these answers is a tertiary alcohol.

- - 93. How many hydrogen atoms are in the formula for the compound with the structure shown below?

a.	16	с.	18
b.	17	d.	19

e. 20

CH₂

CH,

Chem 401 Practice Final Exam Answer Section

MULTIPLE CHOICE

1.	ANS:	F	42.	ANS:	E
2.	ANS:	A	43.	ANS:	A
2. 3.	ANS:	D	44.	ANS:	C
4.	ANS:	E	45.	ANS:	A
5.	ANS:	E	46.	ANS:	B
6.		A	47.	ANS:	A
7.	ANS:	D	48.	ANS:	D
8.	ANS:	D	49.		C
9.	ANS:	С	50.	ANS:	E
10.	ANS:	А	51.	ANS:	В
11.	ANS:	В	52.		D
12.	ANS:	Е	53.	ANS:	В
13.	ANS:	С	54.	ANS:	D
14.	ANS:	E	55.	ANS:	D
15.	ANS:	С	56.	ANS:	E
16.	ANS:	С	57.	ANS:	Е
17.	ANS:	В	58.	ANS:	В
18.	ANS:	А	59.	ANS:	D
19.	ANS:	E	60.	ANS:	А
20.		В	61.	ANS:	В
21.	ANS:	С	62.	ANS:	E
22.	ANS:	А	63.	ANS:	E
23.	ANS:	D	64.	ANS:	С
24.	ANS:	D	65.	ANS:	D
25.	ANS:	D	66.	ANS:	С
26.	ANS:	В	67.	ANS:	
27.	ANS:	A	68.	ANS:	С
28.	ANS:	E	69.	ANS:	D
29.	ANS:	C	70.	ANS:	А
30.	ANS:	A	71.	ANS:	
31.	ANS:	B	72.	ANS:	D
32.	ANS:	B	73.	ANS:	E
33.	ANS:	B	74.	ANS:	В
34.	ANS:	A	75.	ANS:	E
35.	ANS:	A	76.	ANS:	C
36. 27	ANS:	D	77. 70	ANS:	A E
37. 29	ANS:	D	78. 70	ANS:	E C
38. 30	ANS:	D	79. 80	ANS:	C P
39. 40.	ANS: ANS:	B C	80. 81	ANS:	B E
40. 41.	ANS: ANS:	E	81. 82.	ANS: ANS:	
41.	AND:	Ľ	02.	ANS:	А

83.	ANS:	В
84.	ANS:	Α
85.	ANS:	D
86.	ANS:	В
87.	ANS:	Е
88.	ANS:	D
89.	ANS:	В
90.	ANS:	Α
91.	ANS:	D
92.	ANS:	В
93.	ANS:	С