Chem 401 Practice for Final Exam

1. Which of the following statements regarding spontaneous changes is false?
a. Spontaneity is favored when heat is released.
b. Spontaneity is favored when the dispersal of matter is increased.
c. Spontaneous changes occur at a given state without any outside influence.
d. Ice melting at $25^{\circ} \mathrm{C}$ is spontaneous primarily due to the increase in molecular disorder (dispersal of matter).
e. All exothermic reactions are spontaneous.
2. What is the entropy change of the reaction below at 298 K and 1 atm pressure?

$$
\begin{array}{lcccc}
& \mathrm{N}_{2}(\mathrm{~g}) & +\quad 3 \mathrm{H}_{2}(\mathrm{~g}) & \rightarrow & 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
S^{0}(\mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}) & \mathrm{S} 191.5 & & 130.6 & \\
192.3
\end{array}
$$

a. $-198.7 \mathrm{~J} / \mathrm{K}$
b. $\quad 76.32 \mathrm{~J} / \mathrm{K}$
c. $-129.7 \mathrm{~J} / \mathrm{K}$
d. $\quad 303.2 \mathrm{~J} / \mathrm{K}$
e. $\quad 384.7 \mathrm{~J} / \mathrm{K}$
3. The heat of vaporization of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is $35.20 \mathrm{~kJ} / \mathrm{mol}$. Its boiling point is $64.6^{\circ} \mathrm{C}$. What is the change in entropy for the vaporization of methanol?
a. $\quad-17.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
b. $3.25 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{K}$
c. $\quad 17.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
d. $104 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
e. $543 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
\qquad 4. Which one of the following reactions has a positive entropy change?
a. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$
b. $\mathrm{BF}_{3}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{F}_{3} \mathrm{BNH}_{3}(\mathrm{~s})$
c. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
d. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
e. $2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
5. Which of the following statements about free energy is false?
a. If ΔS is negative then ΔH must be negative for a spontaneous process.
b. ΔS is positive for many spontaneous processes.
c. ΔG is always negative for spontaneous processes.
d. ΔG is always positive for nonspontaneous processes.
e. ΔS must be positive for a process to be spontaneous.
6. Calculate ΔG^{0} for the reaction below. The standard molar entropy change for the reaction at 298 K is $-287.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$.

$$
3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g})+136.8 \mathrm{~kJ}
$$

a. $\quad-51.2 \mathrm{~kJ} / \mathrm{mol}$
b. $85,500 \mathrm{~kJ} / \mathrm{mol}$
c. $\quad-68.4 \mathrm{~kJ} / \mathrm{mol}$
d. $-236 \mathrm{~kJ} / \mathrm{mol}$
e. $-222 \mathrm{~kJ} / \mathrm{mol}$
7. Evaluate ΔG_{298}^{0} for the following reaction at $25^{\circ} \mathrm{C}$.

	$2 \mathrm{ZnS}(\mathrm{s})$	+	$3 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{ZnO}(\mathrm{s})$	+
	-205.6		0		-348.3	
$\Delta H(\mathrm{~kJ} / \mathrm{mol})$		-296.8				
$S^{0}(\mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})$	57.7		205.0		43.64	

a. $\quad-951.1 \mathrm{~kJ}$
b. -922.6 kJ
c. -704.2 kJ
d. -835.2 kJ
e. -1902 kJ
8. A process cannot be spontaneous (product-favored) if \qquad .
a. it is exothermic, and there is an increase in disorder
b. it is endothermic, and there is an increase in disorder
c. it is exothermic, and there is a decrease in disorder
d. it is endothermic, and there is a decrease in disorder
e. the entropy of the universe increases
9. For which set of values of ΔH and ΔS will a reaction be spontaneous (product-favored) at all temperatures?
a. $\Delta H=+10 \mathrm{~kJ}, \Delta S=-5 \mathrm{~J} / \mathrm{K}$
b. $\Delta H=-10 \mathrm{~kJ}, \Delta S=-5 \mathrm{~J} / \mathrm{K}$
c. $\Delta H=-10 \mathrm{~kJ}, \Delta S=+5 \mathrm{~J} / \mathrm{K}$
d. $\Delta H=+10 \mathrm{~kJ}, \Delta S=+5 \mathrm{~J} / \mathrm{K}$
e. no such values exist
10. Which of the following expressions does not represent a proper expression for the rate of this reaction?

$$
2 \mathrm{~A}+3 \mathrm{~B} \rightarrow \mathrm{~F}+2 \mathrm{G}
$$

b. $\frac{\frac{-\Delta[\mathrm{A}]}{\Delta \mathrm{t}}}{\frac{-\Delta[\mathrm{B}]}{3 \Delta t}}$
c. $\frac{\Delta[\mathrm{F}]}{\Delta \mathrm{t}}$
e. $\frac{-\Delta[\mathrm{A}]}{2 \Delta t}$
11. In the following reaction, the rate of formation of NH_{3} is $0.15 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{min}$. What is the rate of reaction?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a. $\quad 0.15 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{min}$
b. $0.075 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{min}$
c. $\quad-0.075 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{min}$
d. $\quad 0.20 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{min}$
e. $\quad 0.30 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{min}$
12. Suppose a reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ occurs at some initial rate at $25^{\circ} \mathrm{C}$. Which response includes all of the changes below that could increase the rate of this reaction?
I. lowering the temperature
II. adding a catalyst
III. increasing the initial concentration of B
a. I
c. III
e. II and III
b. II
d. I and II
13. The gas phase reaction $\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{D}$ has a reaction rate which is experimentally observed to follow the relationship rate $=k[\mathrm{~A}]^{2}[\mathrm{C}]$. The reaction is \qquad order in A, \qquad order in B , and \qquad order in C.
a. first, second, third
b. first, second, zero
c. second, zero, first
d. second, first, zero
e. second, zero, zero
14. Which of the following statements regarding the rate constant in the rate law expression is incorrect?
a. Its value increases with temperature.
b. Its value is independent of initial concentration at a given temperature.
c. Its units depend on the overall order of reaction.
d. Its value is experimentally determined.
e. The larger its value, the slower the reaction rate.
15. Given the following data for the $\mathrm{NH}_{4}^{+}+\mathrm{NO}_{2}^{-} \rightarrow \mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ reaction

Trial	$\left[\mathrm{NH}_{4}{ }^{+}\right]$	$\left[\mathrm{NO}_{2}{ }^{-}\right]$	Rate M / s
1	$0.010 M$	0.020 M	0.020
2	0.015	0.020	0.030
3	0.010	0.010	0.005

The rate law for the reaction is
a. rate $=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]$
b. rate $=k\left[\mathrm{NH}_{4}^{+}\right]^{2}\left[\mathrm{NO}_{2}^{-}\right]$
c. rate $=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]^{2}$
d. rate $=k\left[\mathrm{NH}_{4}{ }^{+}\right]^{2}\left[\mathrm{NO}_{2}{ }^{-}\right]^{2}$
e. None of the above
16. Evaluate the specific rate constant for this reaction at $800^{\circ} \mathrm{C}$. The rate-law expression is rate $=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$. (Choose the closest answer.)

	$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$		
Experiment	Initial $[\mathrm{NO}]$	Initial $\left[\mathrm{H}_{2}\right]$	Initial Rate of Reaction $\left(M \cdot \mathrm{~s}^{-1}\right)$
1	$0.0010 M$	$0.0060 M$	7.9×10^{-7}
2	$0.0040 M$	$0.0060 M$	1.3×10^{-5}
3	$0.0040 M$	$0.0030 M$	6.4×10^{-6}

a. $\quad 22 M^{-2} \cdot s^{-1}$
b. $4.6 M^{-2} \cdot \mathrm{~s}^{-1}$
c. $\quad 1.3 \times 10^{2} M^{2} \cdot \mathrm{~s}^{-1}$
d. $0.82 \mathrm{M}^{-2} \cdot \mathrm{~s}^{-1}$
e. $0.024 M^{-2} \cdot \mathrm{~s}^{-1}$
17. The gas phase reaction below obeys the rate-law expression rate $=k\left[\mathrm{PCl}_{5}\right]$. At 400 K the specific rate constant is $0.0371 \mathrm{~min}^{-1}$. How many hours are required to reduce a sample of PCl_{5} to $\mathbf{1 0 \%}$ of its original amount?

$$
\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

a. $\quad 3.10 \mathrm{hrs}$
b. $\quad 1.03 \mathrm{hrs}$
c. 186 hrs
d. 3.71 hrs
e. 62 hrs
18. A plot of $\frac{1}{[D]}$ versus time is linear for the reaction $\mathrm{D} \rightarrow \mathrm{E}$. What is the kinetic order of the reaction?
a. second
b. first
c. zero
d. one-half
e. negative one
19. Which idea listed below is not a part of the collision theory of reaction rates?
a. Molecules must be properly oriented when they collide to react.
b. Molecules must collide to react.
c. Molecules must collide with enough kinetic energy to overcome the potential energy stabilization of the bonds.
d. Effective collisions result in a chemical reaction.
e. All molecular collisions result in a reaction.
20. Given the following potential energy diagram for the one-step reaction

$$
\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{Z}+\mathrm{R}
$$

The activation energy of the reverse reaction is equal to \qquad .
a. d
b. c plus d
c. c
d. a plus c
e. d minus a
21. Consider the hypothetical reaction shown below.

$$
2 \mathrm{~A}+\mathrm{C}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{C}+\mathrm{C}
$$

Assume that the following proposed mechanism is consistent with the rate data.

A	$+\mathrm{C}_{2} \rightarrow \mathrm{AC}+\mathrm{C}$	slow
AC	$+\mathrm{A}_{\mathrm{A}} \rightarrow \mathrm{A}_{2} \mathrm{C}$	fast
2 A	$+\mathrm{C}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{C}+\mathrm{C}$	overall

Which one of the following statements must be true? The reaction is \qquad _.
a. first order in A, first order in B, and third order overall
b. second order in C_{2} and second order overall
c. first order in A and first order in C_{2}
d. second order in C_{2}, zero order in A , and third order overall
e. second order in A and second order overall
22. The specific rate constant, k, for a reaction is $0.44 \mathrm{~s}^{-1}$ at 298 K , and the activation energy is $245 . \mathrm{kJ} / \mathrm{mol}$. Calculate k at 398 K . (The universal gas constant $=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$.)
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
a. $\quad 2.71 \times 10^{10} \mathrm{~s}^{-1}$
b. $6.17 \times 10^{10} \mathrm{~s}^{-1}$
c. $1.03 \times 10^{10} \mathrm{~s}^{-1}$
d. $8.32 \times 10^{8} \mathrm{~s}^{-1}$
e. $4.51 \times 10^{9} \mathrm{~s}^{-1}$
23. What is the value of K_{c} for the reaction $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$ if at equilibrium $\left[\mathrm{CH}_{4}\right]=0.20 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.20 \mathrm{M},[\mathrm{CO}]=0.50 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=1.50 \mathrm{M}$?
a. 19
b. 0.24
c. 0.053
d. 42
e. 16
24. Given: $\mathrm{A}(\mathrm{g})+3 \mathrm{~B}(\mathrm{~g}) \leftrightarrow \mathrm{C}(\mathrm{g})+2 \mathrm{D}(\mathrm{g})$

One (1.0) mole of A and 1.0 mole of B are placed in a 5.0-liter container. After equilibrium has been established, 0.50 mole of D is present in the container. Calculate the equilibrium constant, K_{c}, for the reaction.
a. 1.2
b. 0.68
c. 12
d. 27
e. 1.4×10^{2}
25. The following reaction is initiated and the concentrations are measured after ten minutes:

$$
\mathrm{A}(\mathrm{~g})+3 \mathrm{~B}(\mathrm{~g}) \leftrightarrow \mathrm{AB}_{3}(\mathrm{~g}) ; K_{\mathrm{c}}=1.33 \times 10^{-2}
$$

$[\mathrm{A}]=1.78 \mathrm{M} \quad[\mathrm{B}]=2.21 \mathrm{M} \quad\left[\mathrm{AB}_{3}\right]=1.19 \mathrm{M}$
Is the reaction in equilibrium?
a. Yes.
b. No, because $Q<K$.
c. No, and the $\left[\mathrm{AB}_{3}\right]$ must increase
to establish equilibrium.
d. No, because $Q>K$.
e. There is no way to tell.
26. The numerical value of the equilibrium constant, K_{c}, for the following gas phase reaction is 0.50 at a certain temperature. When a certain reaction mixture reaches equilibrium, the concentration of O_{2} is found to be 2.0 M, while the concentration of SO_{3} is found to be 10 M . What is the equilibrium concentration of SO_{2} in this mixture?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

a. $\quad 0.50 \mathrm{M}$
b. $\quad 10 \mathrm{M}$
c. $\quad 0.10 \mathrm{M}$
d. $\quad 5.0 \mathrm{M}$
e. $\quad 1.0 \mathrm{M}$
27. For the following reaction, K_{c} is 144 at $200^{\circ} \mathrm{C}$. If 0.400 mol of both A and B are placed in a 2.00 -liter container at that temperature, what will be the concentration of B at equilibrium?

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \leftrightarrow \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g})
$$

a. $\quad 0.015 \mathrm{M}$
b. $\quad 1.64 \mathrm{M}$
c. $\quad 0.200 \mathrm{M}$
d. 0.185 M
e. 1.13 M
28. For the following reaction, which of the changes listed below would cause more reactants to form when equilibrium is re-established?

$$
2 \mathrm{NOCl}(\mathrm{~g})+75 \mathrm{~kJ} \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a. Add a catalyst.
b. Increase the temperature.
c. Decrease the [NO]
d. Increase the volume.
e. Increase the pressure.
29. For the following reaction at equilibrium at $445^{\circ} \mathrm{C}$ the partial pressures were found to be $\left[\mathrm{H}_{2}\right]=0.45 \mathrm{~atm}$, $\left[\mathrm{I}_{2}\right]=0.10 \mathrm{~atm}$ and $[\mathrm{HI}]=1.53 \mathrm{~atm}$. Calculate K_{p} for this reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

a. 150
b. 34
c. 52
d. 76
e. 4.4
30. A sample of only solid ammonium chloride was heated in a $1.00-\mathrm{L}$ container at $500 .{ }^{\circ} \mathrm{C}$
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$. At equilibrium, the pressure of $\mathrm{NH}_{3}(\mathrm{~g})$ was found to be 1.75 atm .
What is the equilibrium constant, $\boldsymbol{K}_{\mathbf{c}}$, for the decomposition at this temperature?
a. 7.6×10^{-4}
b. 1.2×10^{4}
c. 4.8×10^{-2}
d. 1.9×10^{2}
e. 1.8×10^{-3}
31. Which one of the following pairs of acids and conjugate bases is incorrectly labeled or incorrectly matched?

Acid
a. water
b. sulfuric acid
c. perchloric acid
d. nitric acid
e. hydrobromic acid

Conjugate Base

hydroxide
sulfate
perchlorate
nitrate
bromide
32. If a compound is able to react as either an acid or a base, it is said to be which of these?
a. autoionized
b. amphoteric
c. hydrated
d. balanced
e. neutralized
33. Which one of the following is not a strong acid?
a. HI
b. HF
c. HNO_{3}
d. $\mathrm{H}_{2} \mathrm{SO}_{4}$
e. HClO_{3}
34. Which one of the following is a soluble, strong base?
a. CsOH
b. $\mathrm{Cu}(\mathrm{OH})_{2}$
c. $\mathrm{Fe}(\mathrm{OH})_{3}$
d. $\mathrm{Mn}(\mathrm{OH})_{2}$
e. $\mathrm{Al}(\mathrm{OH})_{3}$
35. Write the balanced formula unit equation for the reaction of hydrobromic acid with calcium hydroxide. What is the sum of the coefficients? (Do not forget coefficients of one.)
a. 6
b. 7
c. 3
d. 4
e. 5
36. Neutralization, according to the Lewis theory, involves \qquad .
a. proton transfer
b. the formation of a gas
c. the formation of an ionic solid
d. the formation of a coordinate covalent bond
e. the combination of a hydrogen ion with a hydroxide ion to form water
37. In the reaction $\mathrm{SnCl}_{4}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{SnCl}_{6}^{2-}$, the SnCl_{4} functions as a(an) \qquad _.
a. Brønsted-Lowry acid
b. Brønsted-Lowry base
c. Arrhenius base
d. Lewis acid
e. Lewis base

Chapter 18 Values

The following values will be useful for problems in this chapter.

Acid	K	Substance or Species	K
HF	$K_{\mathrm{a}}=7.2 \times 10^{-4}$	NH_{3}	$K_{\mathrm{b}}=1.8 \times 10^{-5}$
HNO_{2}	$K_{\mathrm{a}}=4.5 \times 10^{-4}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	$K_{\mathrm{b}}=7.4 \times 10^{-5}$
$\mathrm{CH}_{3} \mathrm{COOH}$	$K_{\mathrm{a}}=1.8 \times 10^{-5}$	$\left[\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$	$K_{\mathrm{a}}=5.0 \times 10^{-10}$
HOCl	$K_{\mathrm{a}}=3.5 \times 10^{-8}$	$\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right]_{6}\right]^{2+}$	$K_{\mathrm{a}}=3.0 \times 10^{-10}$
HOBr	$K_{\mathrm{a}}=2.5 \times 10^{-9}$	$\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right]_{6}\right]^{3+}$	$K_{\mathrm{a}}=4.0 \times 10^{-3}$
HOCN	$K_{\mathrm{a}}=3.5 \times 10^{-4}$	$\left[\mathrm{Be}\left(\mathrm{OH}_{2}\right)_{4}\right]^{2+}$	$K_{\mathrm{a}}=1.0 \times 10^{-5}$
HCN	$K_{\mathrm{a}}=4.0 \times 10^{-10}$	$\left[\mathrm{Cu}\left(\mathrm{OH}_{2}\right)_{4}\right]^{2+}$	$K_{\mathrm{a}}=1.0 \times 10^{-8}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$K_{\mathrm{a} 1}=$ very large	HBO_{2}	$K_{\mathrm{a}}=6.0 \times 10^{-10}$
	$K_{\mathrm{a} 2}=1.2 \times 10^{-2}$	$\left(\mathrm{COOH}_{2}\right.$	$K_{\mathrm{a} 1}=5.9 \times 10^{-2}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	$K_{\mathrm{a} 1}=4.2 \times 10^{-7}$		$K_{\mathrm{a} 2}=6.4 \times 10^{-5}$
	$K_{\mathrm{a} 2}=4.8 \times 10^{-11}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$K_{b}=5.0 \times 10^{-4}$

38. Which one of the following substances is not a strong electrolyte?
a. $\mathrm{NH}_{4} \mathrm{Cl}$
b. HClO_{4}
c. HNO_{3}
d. NH_{3}
e. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
39. The molar concentration of the Ca^{2+} ion is \qquad and the molar concentration of OH^{-}ion is \qquad in 0.015 M calcium hydroxide.
a. $\quad 0.015 \mathrm{M} ; 0.015 \mathrm{M}$
b. $0.015 \mathrm{M} ; 0.030 \mathrm{M}$
c. $0.030 \mathrm{M} ; 0.015 \mathrm{M}$
d. $\quad 0.030 \mathrm{M} ; 0.030 \mathrm{M}$
e. not enough information to calculate
40. Calculate the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions in a $0.25 \mathrm{M} \mathrm{HClO}_{4}$ solution.
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.25 \mathrm{M},\left[\mathrm{OH}^{-}\right]=0.25 \mathrm{M}$
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.25 \mathrm{M},\left[\mathrm{OH}^{-}\right]=4.0 \mathrm{M}$
c. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.25 \mathrm{M},\left[\mathrm{OH}^{-}\right]=4.0 \times 10^{-14} \mathrm{M}$
d. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.50 \mathrm{M},\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-14} \mathrm{M}$
e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{M},\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
41. A solution having a pH of 1.4 would be described as \qquad .
a. distinctly basic
b. slightly basic
c. neutral
d. slightly acidic
e. distinctly acidic
42. Calculate the pOH of a solution that has the OH^{-}concentration of 0.50 M .
a. 0.50
b. 14.30
c. 6.70
d. 13.70
e. 0.30
43. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in a solution in which $\mathrm{pH}=4.32$?
a. $4.8 \times 10^{-5} \mathrm{M}$
b. $\quad 6.2 \times 10^{-4} \mathrm{M}$
c. $\quad 5.1 \times 10^{-4} \mathrm{M}$
d. $8.6 \times 10^{-5} \mathrm{M}$
e. $\quad 3.5 \times 10^{-4} \mathrm{M}$
44. The pH of a 0.10 M solution of a monoprotic acid is 2.85 . What is the value of the ionization constant of the acid?
a. 6.3×10^{-5}
b. 3.8×10^{-6}
c. 2.0×10^{-5}
d. 4.0×10^{-8}
e. 7.2×10^{-6}
45. What is the [OCl^{-}] in 0.10 M hypochlorous acid, HOCl ? $K_{\mathrm{a}}=3.5 \times 10^{-8}$
a. $\quad 5.9 \times 10^{-5} \mathrm{M}$
b. $8.4 \times 10^{-4} \mathrm{M}$
c. $\quad 6.1 \times 10^{-4} \mathrm{M}$
d. $4.2 \times 10^{-6} \mathrm{M}$
e. $\quad 3.6 \times 10^{-7} \mathrm{M}$
46. Calculate the value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a 0.25 M solution of aqueous ammonia. $K_{\mathrm{b}}=1.8 \times 10^{-5}$
a. $\quad 2.1 \times 10^{-3} \mathrm{M}$
b. $4.7 \times 10^{-12} \mathrm{M}$
c. $\quad 2.3 \times 10^{-9} \mathrm{M}$
d. $\quad 4.3 \times 10^{-10} \mathrm{M}$
e. $2.4 \times 10^{-11} \mathrm{M}$
47. Which of the following anions is the strongest base?
a. ClO^{-}
b. ClO_{3}^{-}
c. ClO_{4}
d. Cl^{-}
e. I^{-}
48. When solid NaCN is added to water, the pH \qquad .
a. remains at 7
b. becomes greater than 7 because of hydrolysis of Na^{+}
c. becomes less than 7 because of hydrolysis of Na^{+}
d. becomes greater than 7 because of hydrolysis of CN^{-}
e. becomes less than 7 because of hydrolysis of CN^{-}
49. Calculate the pH of 0.14 M NaF solution.
a. 8.09
b. 8.12
c. 8.14
d. 8.18
e. 8.21

Chapter 19 Values
The following equilibrium constants will be useful for some of the problems.

Substance	Constant	Substance	Constant
$\mathrm{HCO}_{2} \mathrm{H}$	$K_{\mathrm{a}}=1.8 \times 10^{-4}$	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$K_{1}=4.2 \times 10^{-7}$
HNO_{2}	$K_{\mathrm{a}}=4.5 \times 10^{-4}$		$K_{2}=4.8 \times 10^{-11}$
HOCl	$K_{\mathrm{a}}=3.5 \times 10^{-8}$	$(\mathrm{COOH})_{2}$	$K_{1}=5.9 \times 10^{-2}$
HF	$K_{\mathrm{a}}=7.2 \times 10^{-4}$		$K_{2}=6.4 \times 10^{-5}$
HCN	$K_{\mathrm{a}}=4.0 \times 10^{-10}$	$\mathrm{CH}_{3} \mathrm{COOH}$	$K_{\mathrm{a}}=1.8 \times 10^{-5}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$K_{1}=$ very large	HOCN	$K_{\mathrm{a}}=3.5 \times 10^{-4}$
	$K_{2}=1.2 \times 10^{-2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$K_{\mathrm{b}}=4.2 \times 10^{-10}$
HOBr	$K_{a}=2.5 \times 10^{-9}$	NH_{3}	$K_{\mathrm{b}}=1.8 \times 10^{-5}$
$* *$			

50. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution that is 0.0100 M in HOCl and 0.0300 M in NaOCl ?
a. $\quad 2.14 \times 10^{-7} \mathrm{M}$
b. $\quad 1.45 \times 10^{-7} \mathrm{M}$
c. $\quad 7.41 \times 10^{-8} \mathrm{M}$
d. $\quad 2.29 \times 10^{-8} \mathrm{M}$
e. $1.17 \times 10^{-8} \mathrm{M}$
51. Which one of the following combinations is not a buffer solution?
a. $\mathrm{NH}_{3}-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
b. $\mathrm{HBr}-\mathrm{KBr}$
c. $\mathrm{HCN}-\mathrm{NaCN}$
d. $\mathrm{NH}_{3}-\mathrm{NH}_{4} \mathrm{Br}$
e. $\mathrm{CH}_{3} \mathrm{COOH}-\mathrm{NaCH}_{3} \mathrm{COO}$
52. It is desired to buffer a solution at $\mathrm{pH}=4.30$. What molar ratio of $\mathrm{CH}_{3} \mathrm{COOH}$ to $\mathrm{NaCH}_{3} \mathrm{COO}$ should be used?
a. $1.2 / 1$
b. $0.8 / 1$
c. $0.12 / 1$
d. 2.8/1
e. $6.2 / 1$
53. What is the pH at the point in a titration at which 20.00 mL of 1.000 M KOH has been added to 25.00 mL of 1.000 M HBr ?
a. 1.67
b. 0.95
c. 3.84
d. 2.71
e. 1.22
54. What is the pH of the solution resulting from the addition of 25.0 mL of 0.0100 M NaOH solution to 40.0 mL of 0.0100 M acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$?
a. 4.54
b. 4.52
c. 4.94
d. 4.96
e. 5.17
55. How many grams of potassium formate, KHCOO, must be added to $\mathbf{5 0 0} \mathbf{~} \mathbf{~ m L}$ of a $\mathbf{0 . 0 7 0 0} \mathbf{M}$ solution of formic acid, $\mathbf{H C O O H}$, to produce a buffer solution with a pH of $\mathbf{3 . 5 0}$? (Any change in the volume of the solution due to the addition of solid potassium formate is insignificant.)
$K_{\mathrm{a}}=\mathbf{1 . 8} \times \mathbf{1 0}^{-4}$ for HCOOH .
a. 1.0 g
b. 5.2 g
c. 6.7 g
d. 1.7 g
56. Calculate the solubility product constant for aluminum hydroxide. Its molar solubility is 2.9×10^{-9} mole per liter at $25^{\circ} \mathrm{C}$.
a. 9.8×10^{-26}
b. 4.9×10^{-26}
c. 7.1×10^{-35}
d. 2.1×10^{-34}
e. 1.9×10^{-33}
57. Magnesium hydroxide is a slightly soluble substance. If the pH of a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 10.49 at $25^{\circ} \mathrm{C}$, calculate $K_{\text {sp }}$ for $\mathrm{Mg}(\mathrm{OH})_{2}$.
a. 8.8×10^{-16}
b. 4.2×10^{-15}
c. 6.0×10^{-10}
d. 4.4×10^{-14}
e. 1.5×10^{-11}
58. How many grams of $\mathrm{Mn}(\mathrm{OH})_{3}$ will dissolve in 1350 mL of water at $25^{\circ} \mathrm{C}$? $K_{\text {sp }}=1.0 \times 10^{-36}$
a. $4.6 \times 10^{-8} \mathrm{~g}$
b. $\quad 6.3 \times 10^{-8} \mathrm{~g}$
c. $5.9 \times 10^{-10} \mathrm{~g}$
d. $1.4 \times 10^{-7} \mathrm{~g}$
e. $9.3 \times 10^{-7} \mathrm{~g}$
59. The $K_{\text {sp }}$ for $\mathrm{Fe}\left(\mathrm{IO}_{3}\right)_{3}$ is 10^{-14}. We mix two solutions, one containing Fe^{3+} and one containing IO_{3}^{-}ions at $25^{\circ} \mathrm{C}$. At the instant of mixing, $\left[\mathrm{Fe}^{3+}\right]=10^{-4} \mathrm{M}$ and $\left[\mathrm{IO}_{3}^{-}\right]=10^{-5} \mathrm{M}$. Which one of the following statements is true?
a. A precipitate forms, because $Q_{\text {sp }}>K_{\text {sp }}$.
b. A precipitate forms, because $Q_{\text {sp }}<K_{\text {sp }}$.
c. No precipitate forms, because $Q_{\text {sp }}>K_{\text {sp }}$.
d. No precipitate forms, because $Q_{\text {sp }}<K_{\text {sp }}$.
e. None of the preceding statements is true.
60. A solution contains $0.05 \mathrm{M} \mathrm{Au}^{+}, 0.05 \mathrm{M} \mathrm{Cu}^{+}$, and $0.05 \mathrm{M} \mathrm{Ag}^{+}$ions. When solid NaCl is added to the solution, what is the order in which the chloride salts will begin to precipitate? $K_{\text {sp(Agcl) }}=1.8 \times 10^{-10}, K_{\text {sp(Aucl) }}=2.0 \times$ $10^{-13}, K_{\text {sp (CuCl) }}=1.9 \times 10^{-7}$
a. $\mathrm{AuCl}>\mathrm{AgCl}>\mathrm{CuCl}$
b. $\mathrm{AuCl}>\mathrm{AgCl}>\mathrm{NaCl}$
c. $\mathrm{AgCl}>\mathrm{CuCl}>\mathrm{AuCl}$
d. $\mathrm{CuCl}>\mathrm{AgCl}>\mathrm{AuCl}$
e. $\mathrm{NaCl}>\mathrm{CuCl}>\mathrm{AgCl}$
61. Calculate the concentration of Cu^{2+} ions in a $0.010 \mathrm{M}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ solution at $25^{\circ} \mathrm{C}$.
K_{d} for $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}=8.5 \times 10^{-13}$
a. $\quad 1.3 \times 10^{-3} \mathrm{M}$
b. $\quad 5.1 \times 10^{-4} \mathrm{M}$
c. $\quad 6.3 \times 10^{-5} \mathrm{M}$
d. $8.7 \times 10^{5} \mathrm{M}$
e. $\quad 1.3 \times 10^{-6} \mathrm{M}$
62. What is the oxidation number of arsenic in $\mathrm{K}_{3} \mathrm{AsO}_{4}$?
a. +1
d. +4
b. +2
e. +5
c. +3
63. Balance the following equation. How many HCl are there on the left side of the balanced equation?

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CrCl}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

a. 1
b. 2
c. 3
d. 4
e. 8
64. Consider the following net ionic equation. Which species is oxidized?

$$
\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{2-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{SO}_{4}^{2-} \text { (acidic solution) }
$$

a. MnO_{4}^{-}
b. Mn^{2+}
c. $\mathrm{SO}_{3}{ }^{2-}$
d. SO_{4}^{2-}
e. no species is oxidized
65. In any electrochemical cell, the anode is always \qquad
a. the positive electrode.
b. the negative electrode.
c. the electrode at which some species gains electrons.
d. the electrode at which some species loses electrons.
e. the electrode at which reduction occurs.
66. Which choice includes all of the following that are oxidation-reduction reactions and no others?
I. $\quad \mathrm{BaSO}_{3}(\mathrm{~s}) \rightarrow \mathrm{BaO}(\mathrm{s})+\mathrm{SO}_{2}(\mathrm{~g})$
II. $\quad 2 \mathrm{~K}(\mathrm{~s})+\mathrm{Br}_{2}(\ell) \rightarrow 2 \mathrm{KBr}(\mathrm{s})$
III. $\quad \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}($ e $)$
IV. $\quad \mathrm{SnS}_{2}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{SnCl}_{6}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$
V. $\quad 3 \mathrm{Cl}_{2}(\mathrm{~g})+6 \mathrm{KOH}(\mathrm{aq}) \rightarrow 5 \mathrm{KCl}(\mathrm{aq})+\mathrm{KClO}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$
a. II, III, and IV
b. I and III
c. II and V
d. I and IV
67. How many coulombs of charge pass through a cell if 2.40 amperes of current are passed through the cell for 85.0 minutes?
a. $\quad 2.04 \times 10^{2} \mathrm{C}$
b. $1.33 \times 10^{-1} \mathrm{C}$
c. $1.22 \times 10^{4} \mathrm{C}$
d. $2.12 \times 10^{3} \mathrm{C}$
e. 3.40 C
68. Which of the following statements about voltaic cells is false?
a. Voltaic cells are spontaneous reactions.
b. The cathode is positive.
c. Electrons flow from the cathode to the anode.
d. A salt bridge maintains electrical contact and charge neutrality in the half-cells.
e. The half-reactions take place in separate cells.
69. A voltaic cell is constructed with one cell consisting of an Al electrode in $1.0 \mathrm{M} \mathrm{Al}^{3+}$ and another cell with an Fe electrode in $1.0 \mathrm{M} \mathrm{Fe}^{2+}$. When this cell operates, the Al electrode loses mass and the Fe electrode gains mass. Which of the following represents the reaction that occurs at the positive electrode of this cell?
a. $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$
b. $\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$
c. $\mathrm{Al} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-}$
d. $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$
e. $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
70. Which of the following statements about the operation of a standard galvanic cell made of a $\mathrm{Cu} / \mathrm{Cu}^{2+}$ half-cell and a $\mathrm{Zn} / \mathrm{Zn}^{2+}$ half-cell is false?
a. The mass of the copper electrode decreases.
b. The $\left[\mathrm{Zn}^{2+}\right]$ increases.
c. The $\left[\mathrm{Cu}^{2+}\right]$ decreases.
d. The salt bridge maintains charge neutrality.
e. The zinc electrode is oxidized.
71. Which of the following describes the net reaction that occurs in the cell,
$\mathrm{Cd}\left|\mathrm{Cd}^{2+}(1 M) \| \mathrm{Cu}^{2+}(1 M)\right| \mathrm{Cu}$?
a. $\mathrm{Cu}+\mathrm{Cd}^{2+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cd}$
b. $\mathrm{Cu}+\mathrm{Cd} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cd}^{2+}$
c. $\mathrm{Cu}^{2+}+\mathrm{Cd}^{2+} \rightarrow \mathrm{Cu}+\mathrm{Cd}$
d. $\mathrm{Cu}^{2+}+\mathrm{Cd} \rightarrow \mathrm{Cu}+\mathrm{Cd}^{2+}$
e. $2 \mathrm{Cu}+\mathrm{Cd}^{2+} \rightarrow 2 \mathrm{Cu}^{+}+\mathrm{Cd}$
72. What is the cell potential for a cell constructed by immersing a strip of manganese in a 1.0 M MnSO and a strip of iron in a $1.0 \mathrm{M} \mathrm{FeSO}_{4}$ solution and completing the circuit by a wire and a salt bridge?
a. -1.62 V
b. +1.62 V
c. -0.74 V
d. +0.74 V
e. +1.21 V
73. What is the cell potential for the following reaction if the $\left[\mathrm{Au}^{+}\right]=0.0015 \mathrm{M}$ and the $\left[\mathrm{Fe}^{3+}\right]=0.033 \mathrm{M}$?

Relevant half-reactions are $\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}), \mathrm{E}_{\text {red }}^{0}=-0.04 \mathrm{~V}$ and $\mathrm{Au}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s}), \mathrm{E}_{\text {red }}^{0}=1.69 \mathrm{~V}$
$\mathrm{Fe}(\mathrm{s})+3 \mathrm{Au}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{Au}(\mathrm{s})$
a. $\quad 1.87 \mathrm{~V}$
b. $\quad 1.73 \mathrm{~V}$
c. 1.65 V
d. $\quad 1.70 \mathrm{~V}$
e. 1.59 V
74.

Reduction Half-Reaction	Standard Reduction Potential $\boldsymbol{E}^{\mathbf{0}}$ (volts)
$\mathrm{Mg}^{2+}+2 e^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.37
$\mathrm{Ni}^{2+}+2 e^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.25

Which of the following reactions will take place spontaneously:
a. $\quad \mathrm{Ni}^{2+}+\mathrm{Mg}^{2+} \rightarrow \mathrm{Ni}(\mathrm{s})+\mathrm{Mg}(\mathrm{s})$
b. $\mathrm{Ni}^{2+}+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Ni}(\mathrm{s})+\mathrm{Mg}^{2+}$
c. $\mathrm{Ni}(\mathrm{s})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Ni}^{2+}+\mathrm{Mg}^{2+}$
d. $\mathrm{Ni}(\mathrm{s})+\mathrm{Mg}^{2+} \rightarrow \mathrm{Ni}^{2+}+\mathrm{Mg}(\mathrm{s})$
75. In which one of the following does the transition metal have a $3 d 8$ electronic configuration?
a. $\left[\mathrm{Fe}(\mathrm{NCS})\left(\mathrm{OH}_{2}\right)_{5}\right]^{2+}$
b. $\left[\mathrm{FeF}_{6}\right]^{4-}$
c. $\left[\mathrm{CuCl}_{4}\right]^{2-}$
d. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
e. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
76. Which one of the following octahedral configurations has no low spin configuration?
a. d^{4}
b. d^{7}
c. d^{8}
d. d^{6}
e. d^{5}
77. Consider the complex ion $\left[\mathrm{FeF}_{6}\right]^{3-}$. Which response includes all of the following statements that are true, and no false statements?
I. It is paramagnetic.
II. It is a low spin complex.
III. It is a high spin complex.
IV. The oxidation number of iron is +3 .
a. I, III, and IV
d. I and II
b. II and III
e. II and IV
c. IV
78. Consider the complex ion $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$. Which of the following responses includes all of the true statements with respect to this complex ion and the ions from which it was formed, and no false statements?
I. The complex ion is octahedral.
II. $\quad \mathrm{Fe}^{2+}$ is a d^{5} ion.
III. CN - is a strong field ligand.
IV. CN- is a weak field ligand.
V. The complex ion is a low spin complex.
VI. The complex ion is a high spin complex.
VII. The complex ion contains no unpaired electrons.
VIII. The complex ion contains four unpaired electrons.
a. I, II, III, V, and VII
b. II, III, V, and VII
c. II, IV, VI, and VIII
d. I, II, IV, VI, and VIII
e. I, III, V, and VII
79. Which of the following statements concerning octahedral complexes is incorrect?
a. Strong field ligands produce large crystal field splittings.
b. Weak field ligands produce high spin complexes.
c. Halide ions are strong field ligands.
d. Weak field ligands result in relatively small values for Δ°.
e. A relatively large value for Δ° causes a complex ion to absorb relatively high energy (shorter wavelength) light.
80. Complete and balance the following equation. The missing term is \qquad .

$$
{ }_{21}^{44} \mathrm{Sc}+{ }_{1}^{2} \mathrm{H} \rightarrow+\quad+{ }_{0}^{1} \mathrm{n}
$$

a. ${ }_{21}^{45} \mathrm{Sc}$
d. ${ }_{21}^{46} \mathrm{Sc}$
b. 45
e. 46
${ }_{22} \mathrm{Ti}$ ${ }_{22} \mathrm{Ti}$
c. ${ }_{20}^{42} \mathrm{Ca}$
81. If the nucleus ${ }_{47}^{106} \mathrm{Ag}$ decays by an electron capture, the resulting isotope would be \qquad .
a. ${ }_{47}^{107} \mathrm{Ag}$
d. ${ }_{46}^{105} \mathrm{Pd}$
b. ${ }_{48}^{106} \mathrm{Cd}$
e. ${ }_{46}^{106} \mathrm{Pd}$
c. ${ }_{49}^{110} \mathrm{In}$
82. The half-life of Tc-99 is 2.13×10^{5} years. What is the value of the specific rate constant, k ?
a. $\quad 3.25 \times 10^{-6} \mathrm{y}^{-1}$
b. $1.41 \times 10^{-6} \mathrm{y}^{-1}$
c. $4.69 \times 10^{-6} \mathrm{y}^{-1}$
d. $0.693 \mathrm{y}^{-1}$
e. $1.48 \times 10^{5} \mathrm{y}^{-1}$
83. Nitrogen- 13 has a half-life of 9.97 minutes. How much of a $10.0-\mathrm{g}$ sample remains after 60.0 minutes?
a. 9.2 g
b. 0.15 g
c. 0.35 g
d. 1.2 g
e. 2.5 g
84. The half-life of ${ }^{33} \mathrm{P}$ is 25.3 days. How long will it take for 64.0 g to decay to 1.0 g ?
a. 150 d
b. 350 d
c. 210 d
d. 120 d
e. 100 d
85. What is the molecular formula for heptane?
a. $\mathrm{C}_{7} \mathrm{H}_{14}$
b. $\mathrm{C}_{7} \mathrm{H}_{12}$
c. $\mathrm{C}_{9} \mathrm{H}_{18}$
d. $\mathrm{C}_{7} \mathrm{H}_{16}$
e. $\mathrm{C}_{9} \mathrm{H}_{20}$
86. The correct IUPAC name for the compound shown below is \qquad .

a. 3,5,6-trimethyl-6-propyloctane
b. 6-ethyl-3,5,6-trimethylnonane
c. 2-ethyl-4,5-dimethyl-5-propylheptane
d. 2,5-diethyl-4,5-dimethyloctane
e. 3,4,6-trimethyl-3-propyloctane
87. Benzene does not have \qquad _.
a. sp^{2} hybridized carbons
b. π bonds
c. resonance
d. delocalized electrons
e. tetrahedral carbons
88. Which one of the following is a tertiary alcohol?
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
b. $\mathrm{CH}_{3} \mathrm{OH}$
c. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
d. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
e. None of these answers is a tertiary alcohol.
\qquad

a. acid
d. ketone
b. aldehyde
e. ether
c. phenol
90. \qquad is the best known polyamide.
a. nylon
d. neoprene
b. Teflon
e. rubber
c. PET
91. Which one of the following alkanes is most likely to be a solid at room temperature?
a. methane, CH_{4}
b. octane, $\mathrm{C}_{8} \mathrm{H}_{18}$
c. dodecane, $\mathrm{C}_{12} \mathrm{H}_{26}$
d. eicosane, $\mathrm{C}_{20} \mathrm{H}_{42}$
\qquad 92. Which one of the following formulas represents an aromatic compound?
a.

b.

c.

93. How many hydrogen atoms are in the formula for the compound with the structure shown below?

a. 16
b. 17
c. 18
d. 19
e. 20

Chem 401 Practice Final Exam

Answer Section

MULTIPLE CHOICE

1. ANS: E
2. ANS: A
3. ANS: D
4. ANS: E
5. ANS: E
6. ANS: A
7. ANS: D
8. ANS: D
9. ANS: C
10. ANS: A
11. ANS: B
12. ANS: E
13. ANS: C
14. ANS: E
15. ANS: C
16. ANS: C
17. ANS: B
18. ANS: A
19. ANS: E
20. ANS: B
21. ANS: C
22. ANS: A
23. ANS: D
24. ANS: D
25. ANS: D
26. ANS: B
27. ANS: A
28. ANS: E
29. ANS: C
30. ANS: A
31. ANS: B
32. ANS: B
33. ANS: B
34. ANS: A
35. ANS: A
36. ANS: D
37. ANS: D
38. ANS: D
39. ANS: B
40. ANS: C
41. ANS: E
42. ANS: E
43. ANS: A
44. ANS: C
45. ANS: A
46. ANS: B
47. ANS: A
48. ANS: D
49. ANS: C
50. ANS: E
51. ANS: B
52. ANS: D
53. ANS: B
54. ANS: D
55. ANS: D
56. ANS: E
57. ANS: E
58. ANS: B
59. ANS: D
60. ANS: A
61. ANS: B
62. ANS: E
63. ANS: E
64. ANS: C
65. ANS: D
66. ANS: C
67. ANS: C
68. ANS: C
69. ANS: D
70. ANS: A
71. ANS: D
72. ANS: D
73. ANS: E
74. ANS: B
75. ANS: E
76. ANS: C
77. ANS: A
78. ANS: E
79. ANS: C
80. ANS: B
81. ANS: E
82. ANS: A
83. ANS: B
84. ANS: A
85. ANS: D
86. ANS: B
87. ANS: E
88. ANS: D
89. ANS: B
90. ANS: A
91. ANS: D
92. ANS: B
93. ANS: C
